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Bridge function and other structural properties of core-softened model fluids
from molecular dynamics simulations
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~Received 28 March 2002; revised manuscript received 10 May 2002; published 28 August 2002!

Molecular dynamics~MD! simulations in three dimensions have been performed for a fluid with particles
interacting with a continuous version of the Stell-Hemmer core-softened potential that in two dimensions has
been known to reproduce most of the static and dynamic anomalies of liquid water. The pair distribution
function obtained from the MD simulation is extrapolated with the help of integral equation theory with a
suitable closure relation and the bridge function is extracted. A strong dependence of the bridge function on the
system size, i.e., the total number of particles~N! used in the simulation box is observed, which leads to
spurious values of the structure factor at long wavelengths. A simple self-consistent correction scheme for the
finite size effect has been adopted to correct the bridge function and this scheme produces the correct bridge
function even for a small system size. The effects of temperature, number density, and potential parameters on
the pair distribution functions and extracted bridge functions are extensively studied.
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I. INTRODUCTION

Water, the most important liquid on earth, is known
possess in its properties not only various static anomalies
dynamic anomalies as well@1–3#. As for example, liquid
water exhibits static anomalies such as anomalous den
maximum @2# at T54 °C and increase in isothermal com
pressibility upon cooling, and dynamical anomalies such
increase in diffusion coefficient or decrease in viscosity w
increase in pressure in certain ranges of temperature@3#.
Such anomalies are manifested not only in water, but in so
other liquids @4–6# as well. Apart from these anomalie
liquid-liquid phase separation of a monodispersed pure liq
that has recently been experimentally observed@7# in phos-
phorus is also an interesting phenomenon. Understan
these phenomena from a microscopic viewpoint is a lo
standing interest in the liquid state physics and various
forts to mimic these phenomena with some spherically sy
metric model potentials have already been made@8–12#. The
core-softened potential@13# has so far been shown to be th
most successful model potential in this regard. In a pione
ing work, Stell and Hemmer~SH! have proposed@13# that a
second critical point apart from the normal gas-liquid critic
point is possible for a core-softened potential that has a
gion of negative curvature in the repulsive core. Using th
modynamic arguments, Debenedetti, Raghavan, and Bo
@14# have noted that a ‘‘softened core’’ in potential may
responsible for the density anomaly, one of the anoma
found in liquid water. An analytical solution of the equatio
of state for a double well SH-type potential in one dimens
has been obtained by Cho, Singh, and Robinson@15# and has
been shown to yield density anomaly and the correct p
sure effects on the temperature dependent density. The c
puter simulation study of Sadr-Lahijanyet al. @8# has shown
that the discrete as well as continuous versions of a t
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dimensional~2D! SH core-softened potential are able to r
produce various liquid state anomalies. A detailed 2D sim
lation study has also been reported@10# on the same
problem. A core-softened potential can be regarded as a fi
order approximation to the interaction between water m
ecules as suggested@16,17# by ab initio calculation and in-
version of the experimental oxygen-oxygen rad
distribution function. Recent experimental results@7# reveal
that phosphorus, a single-component system, shows a c
istence between the high-density liquid phase and the l
density liquid phase. Very recently a core-softened poten
has successfully been used@12# to explain the mechanism o
this liquid-liquid phase separation for a three-dimensio
single-component model fluid. A slightly modified form o
the SH potential has also been shown to reproduce both
density anomaly@9# and the liquid-liquid phase separatio
phenomena@11#. Furthermore, a perturbation theory analys
shows a complex phase behavior@18# of a fluid-solid transi-
tion for a modified SH potential.

Most of the studies on fluids with particles interactin
with the SH potential so far have concentrated on obtain
an equation of state from the computer simulation. Howev
a much easier and computationally economic way of stu
ing the liquid state is the well-known integral equatio
theory@19,20#. In this theory, one has to solve the Ornste
Zernike ~OZ! equation@21# with the help of a suitable clo-
sure relation. The accuracy of this approach depends on
accuracy of the closure relation, which in turn depends
how successfully one can construct the so-called bridge fu
tion that is essentially the sum of diagrams that are free
nodal circles. In principle, if the bridge function is give
beforehand, the radial distribution function and the dire
correlation function of a model fluid can easily be dete
mined from the integral equation theory. There have be
attempts to arrive at a universal@22# bridge function for an
arbitrary pair potential through that of an effective ha
sphere like reference system. Although this concept has b
successful@23,24# in many situations, its applicability ha
been rather limited@25–27# and several studies@28,29# on
©2002 The American Physical Society06-1
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the bridge function have, in fact, included other contrib
tions, thus making the bridge function dependent on the
potential in general. One of the important routes to the brid
function for a given pair potential is through computer sim
lation. As the radial distribution function~RDF! g(r ) ob-
tained from the computer simulation is accurate and dev
of any approximation to the many-body problem, it can
inverted to construct the bridge function in the intermedi
range accurately. However, the range of RDF obtained fr
the molecular dynamics~MD! simulation is limited to only
half of the box length of the simulation cell, where the b
length is related to the number of particles taken in the sim
lation cell, i.e., the system size. This imposes difficulty
calculating the bridge function due to the truncation error
the Fourier transform ofh(r )@5g(r )21#, the total correla-
tion function of the system. Various extrapolation schem
have been used to overcome this difficulty. Long ago, Ve
@30# used an extrapolation scheme to obtain the bridge fu
tion of the Lennard-Jones fluid. Recently, the extrapolat
scheme due to Verlet is modified and applied@25# to extract
the bridge function of the Lennard-Jones as well as em
core pseudopotential for aluminum in the intermediate ran
However, the problem due to finite size in the compu
simulation results for various quantities still remains and
correction scheme for obtaining the correct static struct
factor, compressibility, and intermediate scattering funct
has been formulated and applied@31# to a model pair poten-
tial for dense fluid krypton. This scheme has further be
extended@26# in the coordinate space and applied to the c
rection of the finite size effect on RDF and bridge function
the intermediate range.

In the present work, we intend to extract the bridge fun
tion of a core-softened SH potential from the RDF data
tained from the MD simulation through extrapolation. T
MD simulation in microcanonical NVE ensemble is pe
formed to obtain the radial distribution function data for t
continuous version of the SH potential in three dimensio
The bridge function in the intermediate range is then cal
lated through a self-consistent extrapolation procedure@25#.
The finite size effect on the bridge function obtained fro
such extrapolation is corrected through the scheme
Baumketner and Hiwatari@26#. In what follows, in Sec. II we
discuss the model potential and the simulation procedure
Sec. III, we outline the extrapolation scheme along with
correction scheme for the finite size effect. The results for
RDF and the bridge function are gathered in Sec. IV. Fina
a few concluding remarks are offered in Sec. V.

II. MODELS AND MOLECULAR DYNAMICS
SIMULATION

A. Model potential

The continuous version of the core-softened SH poten
u(r ) that we study here is obtained by augmenting an
verted Gaussian well with the well-known Lennard-Jon
~LJ! potential and is given by
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u~r !54el1F S s

r D 12

2S s

r D 6G2el2 expF2aS r

s
2

r 0

s D 2G
~1!

for r<r c and vanishes forr .r c . In the above expression,s
is the distance at whichu(r ) is zero and is related to the siz
of the particle ande is related to the depth of the potential. I
all our studies we user c54.0s. Two sets of potential pa-
rameters have been used in the present work. In one case
second or the outer well is deeper which we call as systemA,
while in the other case the inner well is deeper~systemB!
and both the potentials are shown in Fig. 1 as a function
the interparticle distancer. The parameters we use are:l1
50.5882,l251.0, a520.0 andr 051.5s for systemA and
l151.03,l250.714 285,a520.0, andr 051.5s for system
B.

B. Simulation

In the present work, molecular dynamics simulations
performed in the NVE ensemble for two different tempe
tures and number densities. Simulations are started by p
ing all the particles in a cubic box with fcc lattice configu
ration. Periodic boundary conditions are employed in all
three directions. The particle numbers~N! in the box are
taken to be 864 and 2048. The potential cutoff in all the ca
as has already been mentioned is set to ber c54.0s. The
velocity Verlet algorithm along with the velocity scaling t
maintain the temperature close to the desired value is
ployed. The systems are equilibrated for over 33105 time
steps whereas the time averages for various quantities
taken over 23105 time steps with the time stept* 50.01,
where t* 5t@e/(ms2)#1/2 with m being the mass of a par
ticle. All the quantities are expressed in dimensionless fo
viz. the temperatureT is expressed asT* 5kBT/e, wherekB
is the Boltzmann constant, the pressureP as P* 5Ps3/e,
and the distancer as r * 5r /s, etc.

III. EXTRACTION OF THE BRIDGE FUNCTION

A. Extrapolation scheme without correction for the finite size

In order to obtain the bridge function from the RDF ge
erated by MD simulation, one has to solve the OZ equati
which for an isotropic and homogeneous fluid can be writ
as

FIG. 1. Plot of core-softened potentialu(r ) as a function of
r /s. The solid line representsu(r ) for systemA and the dashed line
represents that of systemB.
6-2
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h~r 12!5c~r 12!1rE dr3c~r 13!h~r 32!, ~2!

wherec(r ) is the direct correlation function andr is the bulk
density of the fluid, along with a closure relation involvin
the g(r ) obtained from the computer simulation. It is th
closure that defines the bridge functionB(r ) through the
exact relation betweenh(r ), u(r ), and the indirect correla
tion functiong(r )@5h(r )2c(r )# as given@19# by

h~r 12!115exp@2bu~r 12!1g~r 12!1B~r 12!#, ~3!

whereb(51/kBT) is the inverse temperature.
The scheme that we have employed in the present wor

extract the bridge function is originally due to Verlet@30# and
modified recently by Kambayashi and Chihara@25#. The
original extrapolation scheme of Verlet employs an extra
lation technique for the values of RDF forr .L/2, L being
the length of the simulation box, in which the Percus-Yevi
~PY! approximation forg(r ) for r .L/2 is combined with
the simulatedg(r ) for r<L/2, viz.,

g~r !5gMD
N ~r !, r ,R, ~4!

g~r !5exp@2bu~r !#@11g~r !#, r>R, ~5!

wheregMD
N (r ) is the RDF obtained from MD simulation an

R is the extrapolating distance that is set as less than or e
to L/2. The superscriptN on gMD(r ) implies that the RDF is
obtained for a closed system with fixedN. It is easy to recas
Eqs.~4! and ~5! in the form of Eq.~3! and use the resulting
equation as closure for the OZ equation that when num
cally solved yields simultaneouslyg(r ) andc(r ) for the en-
tire range andB(r ) for the intermediate range. Verlet in h
work @30# performed MD simulation and applied this metho
to LJ fluid near its triple point. Different schemes for th
closure relation are reported@32,27# in which the right hand
side of Eq.~5! is replaced by some better approximatio
such as hypernetted chain~HNC! or mean spherical approxi
mations.

In the present work, we have used HNC approximat
for the closure relation in Eq.~5! in place of PY approxima-
tion used by Verlet:

g~r !5gMD
N ~r !, r ,R

5exp@2bu~r !1g~r !#, r>R, ~6!

with R5L/2, the largest extrapolating distance possible.
order to obtain the bridge functionBMD(r ), one has to re-
write the above equation with the help of Eq.~3! as

BMD~r !5bu~r !2g~r !1 ln@gMD
N ~r !#, r ,R

50, r>R. ~7!

Solving Eq.~2! numerically with the closure relation give
by Eq.~7!, one obtainsg(r ), c(r ), andB(r ) simultaneously.
The closure relation given by Eq.~7! has been employed b
Kambayashi and Chihara@25# for calculating the bridge
function for LJ as well as a model potential for dense kry
ton. In the present work, we have employed this approach
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the core-softened continuous version of the SH potentia
three dimensions and the results forB(r ) obtained from this
approach show finite size dependence, i.e., dependenc
the number of particlesN used in the simulation. The finite
size dependence ofB(r ) obtained from computer simulate
g(r ) and of other quantities such as the static structure
tor, intermediate scattering function, etc. has already b
reported and a correction scheme for this finiteN has been
devised@31,26#. In the following section, we briefly outline
this correction scheme@31# that we have implemented here

B. Extrapolation scheme with correction for the finite size

The RDF gMD
N (r ) calculated in a MD simulation in a

closed ensemble like NVE, with fixed number of particlesN,
differs from the same calculated in an open system wherN
is allowed to fluctuate, i.e., in grand canonical ensemb
Only in the thermodynamic limitN→`, these two functions
coincide and any difference between these two function
known as finite size effect in computer simulation. It is to
noted that the closure relation used in the present work@i.e.,
Eq. ~7!# utilizes gMD

N (r ) obtained from the MD simulation
with finite N and thus introduces error in the calculation
B(r ). This finite system RDF can, however, be correct
following the work of Salacuseet al. @31#, who have derived
an expression relating the finite system RDFgN(r ) to its
open system counterpartg(r ) as follows: The two-particle
density r (2)(r1 ,r2) in the grand canonical ensemble is e
pressed as@19#

r~2!~r1 ,r2!5 (
N50

`

P~N!r~2!~r1 ,r2 ;N!, ~8!

where P(N) is the probability that the system containsN
particles, andr (2)(r1 ,r2 ;N) is the two-particle density for a
system ofN particles. Expandingr (2)(r1 ,r2 ;N) about the
average number of particlesN̄@5(N50

` P(N)N# in powers of
1/N, one has

r~2!~r1 ,r2!5 (
N50

`

P~N!F r~2!~r1 ,r2 ;N̄!

1~N2N̄!
]

]N̄
r~2!~r1 ,r2 ;N̄!

1
1

2
~N2N̄!2

]2

]N̄2
r~2!~r1 ,r2 ;N̄!1¯G . ~9!

Using the normalization condition forP(N), considering the
resultsr (2)(r1 ,r2)→r2g(r ) andr (2)(r1 ,r2 ;N̄)→r2gN(r ) in
the uniform limit and relating the coefficients to the com
pressibility via fluctuation theory, one arrives at the final e
pression relatingg(r ) with gN(r ) as
6-3
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g~r !5gN~r !1
S~0!

2N

]2

]r2 @r2gN~r !#1O~1/N2!

5gN~r !1
S~0!

2N F2gN~r !14r
]

]r
gN~r !1r2

]2

]r2 gN~r !G ,
~10!

whereS(0) is the value of the static structure factorS(k) at
k50 and is related to the compressibility. Equation~10! is a
standard relation for transformation between ensembles
correction term of order 1/N. As the correction term abov
contains density derivatives, a precise solution of Eq.~10! by
MD simulation is possible only through performing th
simulations at several densities, which is not only an impr
tical choice but in some cases, even infeasible. Thus,
neglecting the density dependence ofgN(r ), Eq. ~10! further
simplifies to

g~r !5gN~r !1
S~0!

N
gN~r !. ~11!

The expression~11! for the correction ofgN(r ) for finite size
can be utilized to correct the simulation RDF providedS(0)
is known. Equation~11! cannot be employed as such sin
S(0) is not knowna priori. However, the fact thatS(0) is
related to the Fourier transform of RDF through the relat

S~0!54prE @g~r !21#r 2dr ~12!

makes it possible to construct a self-consistent itera
scheme for calculating the bridge function from the sim
lated RDFgMD

N (r ). The simulation RDFgMD
N (r ) is first cor-

rected through Eq.~11! and the correctedgMD
N (r ) is then

substituted into the closure relation~7! and the OZ equation
is solved numerically with this corrected closure. The res
ing g(r ) is then transformed according to Eq.~12! to calcu-
late the new estimate forS(0) and the whole cycle is iterate
until a desired convergence between theS(0)’s from two
successive iterations is achieved. Finally, we obtainB(r ),
S(0), g(r ), and c(r ) for the entire range for a given pa
potential. This method when applied@26# to the pair potential
modeling liquid sodium has been shown to correct the bri
function for finite size effect. In the present study, we emp
this correction scheme to obtain the corrected bridge fu
tion for a fluid interacting with the continuous version of th
core-softened SH potential by inverting the RDF data
tained from MD simulations.

IV. RESULTS AND DISCUSSION

A. Results for systemA

The simulation results forg(r ) obtained from the MD
simulation ofN52048 particles for various temperatures a
densities are shown in Fig. 2 for the potential parame
corresponding to systemA ~see Sec. II A for the values o
potential parameters!. The RDF atT* 51.5 for two different
number densitiesr* (5rs3)50.8 andr* 50.6 is plotted in
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the upper panel of Fig. 2. In both the cases, the first t
major peaks correspond to the two wells in the potential.
the case of lower densityr* 50.6, the first peak is reduced a
compared to that forr* 50.8 but the height of the secon
peak due to outer well is increased. It indicates that at low
density~pressure!, the second well is relatively more popu
lated in comparison to that in case of higher density~pres-
sure!. This ‘‘split first peak’’ behavior is characteristic of
core-softened potential that generally has two character
length scales. Similar behavior is also observed@33# in the
case of an overlapping core potential modeling star polym
in good solvent. In order to study the effect of temperatu
in the lower panel of Fig. 2, we have shown the results
g(r ) at a lower temperatureT* 51.0. From a comparison o
the two cases, it is clear that with decrease in temperat
the outer well population increases at lower density while
is the inner well population that shows more increase
higher density.

By inverting these computer simulatedg(r ) data, we have
extracted the bridge functions using the schemes mentio
in Sec. III and the results are plotted in Fig. 3. The unc
rectedB(r ) that we denote asBu(r ) as obtained through the
scheme depicted in Sec. III A fromg(r ) of MD simulation
corresponding toN5864 particles forT* 51.5 and r*
50.6 is shown in Fig. 3 along with the same forN52048
particles. It is clear from the figure that there is a consid
able difference between these two results, which can be
tributed to theN dependence of the bridge function. The
B(r ) values have been corrected@which we denote asBc(r )#
according to the scheme described in Sec. III B and are p
ted in the same figure~Fig. 3! for N52048 as well asN
5864 particles. These two correctedBc(r )’s are very close
to each other and also to the uncorrectedBu(r ) for N
52048 particles. Thus, the correction of the bridge funct
is most essential when we extract it from theg(r ) obtained
from a simulation with smaller number of particles. A

FIG. 2. Plot of the radial distribution functiong(r ) vs r /s for
systemA at T* 51.5 ~upper panel! andT* 51.0 ~lower panel!. The
solid line represents results forr* 50.6 and the dashed line repre
sents those forr* 50.8.
6-4
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shown in the inset of Fig. 3, the uncorrected bridge functio
have a plateau extending from intermediater to the extrapo-
lation distanceR where it drops down to zero~see inset!.
This trend is observed even for the case of 2048-part
system where the plateau extends to larger values ofr. How-
ever, the corrected bridge function for theN52048 particle
system does not have this plateau region and smoothly
trapolates to zero. It is to be noted that although the corre
Bc(r ) for N5864 is very close to that forN52048, it still
has a plateau region extending over a small region upr
54s.

Now we discuss the effect of finite size in simulation
the various structural quantities, namely,g(r ) andS(k) ob-
tained from the extrapolation of the simulatedg(r ) data.
Although we have not shown here theg(r ) obtained from
simulation, the same obtained from uncorrected extrap
tion method for evenN5864 particles and the corrected on

FIG. 3. Plot of corrected and uncorrected bridge functions
systemA at T* 51.5 andr* 50.6 extracted from theg(r ) data
obtained from MD simulation with various values ofN, the number
of particles used in simulation. The dashed line representsBu(r ) for
theN5864 particle system, the dotted line representsBc(r ) for the
N5864 particle system, the dash-dot-dot line representsBu(r ) for
theN52048 particle system, and the solid line representsBc(r ) for
theN52048 particle system. In the inset, the same plots are sh
for a larger range.

FIG. 4. Plot of static structure factor as a function ofks ob-
tained from the extrapolatedg(r ) data with and without the finite
size correction forT* 51.5 andr* 50.6 and various values ofN.
The solid line representsS(k) for theN5864 particle system with-
out correction, the dotted line is for theN5864 particle system with
correction, the dash-dot-dot line representsS(k) for the N52048
particle system without correction~shown in the inset only!, and the
dashed line represents the same for theN52048 particle system
with correction. In the inset, all four plots are shown for the sm
ks region.
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are, in fact, almost indistinguishable. This is understanda
also from the correction term@S(0)/N#g(r ) that has a value
of the order of 1024 at large r, where g(r ) assumes the
asymptotic value of unity and is thus too small to be visib
wheng(r )’s are plotted. In order to investigate the effect
finite size on the static structure factorS(k) or the sensitivity
of S(k) on the details of the bridge function, in Fig. 4, w
have shown the calculated static structure factor obtai
from the extrapolation of MD RDF data atT* 51.5 andr*
50.6 with and without the correction due to the finite si
effect. The corrected data forN5864 as well as forN
52048 almost coincide with each other everywhere inclu
ing the region of small wave vector (ks) values, whereas the
uncorrectedS(k) data forN5864 shows spurious maximum
in this long-wavelength region. For clarity, we have n
shown in the main figure~but have shown in the inset! the

r

n

l

FIG. 5. Plot of the bridge functionB(r ) vs r /s for systemA at
T* 51.5 ~upper panel! and atT* 51.0 ~lower panel!. The dotted
line represents results forr* 50.8 while the solid line correspond
to the same forr* 50.6.

FIG. 6. Same as in Fig. 2 but for systemB.
6-5
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uncorrectedS(k) data for N52048, which coincide with
other data except at lowks values where these data als
show a slight spurious maximum but with smaller deviati
from the corrected value as has been shown in the inset

In order to study the effect of density and temperature
the bridge function, we have shown in Fig. 5 the correc
bridge function of theN52048 particle system for densitie
r* 50.8 and 0.6 at temperaturesT* 51.5 ~upper panel of the
figure! and T* 51.5 ~lower panel of the same figure!. At a
particular temperature, larger oscillations inB(r ) are ob-
served at higher density as compared to lower density an
may be noted that at higher density,B(r ) passes through a
positive maximum at lowerr /s values. The nature ofB(r ) is
similar at low temperature as well, but the oscillations a
more at lower temperature indicating a larger deviation fr
the standard HNC result.

B. Results for systemB

Same set of results@except plot forS(k)# for the param-
eters corresponding to systemB ~see Sec. II A for the values
of potential parameters! are also shown in Figs. 6–8. Th
values ofg(r ) obtained directly from the MD simulation fo
the N52048 particle system forT* 51.5 and forr* 50.8
and 0.6 are shown in the upper panel of Fig. 6, whileg(r )
for the same two densities but at a lower temperatureT*
51.0 are plotted in the lower panel of the same figure. In t
case, due to smaller depth of the outer well in the pair
tential, the peak due to this well at aroundr /s51.5, which is
distinctly seen in theg(r ) of systemA, is not visible and
instead just a shoulder appears around this region. As
pected, the oscillations ing(r ) are more at higher densit
due to stronger packing effect.

As in systemA, the finite size effect on the extracte
bridge function is manifested here too as shown in Fig. 7
T* 51.5 andr* 50.6. The values of the correctedB(r ) for
N5864 are very close to the correctedB(r ) with N

FIG. 7. Same as in Fig. 3 but for systemB and except that the
uncorrectedBu(r ) for the N52048 particle system is not show
here.
w
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n
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it
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s
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r

52048. The corrected values ofB(r ) for the two densities
r* 50.8 and 0.6 for theN52048 particle system are show
in Fig. 8 for the two temperaturesT* 51.5 and 1.0. Here too
the oscillation ofB(r ) at higher density is higher as com
pared to that at lower density.

V. CONCLUDING REMARKS

We have presented a MD simulation study for the rad
distribution function of a fluid with particles interacting wit
the continuous version of a core-softened SH potentia
three dimensions. Extrapolation of these computer gener
RDF’s of finite range with the help of integral equatio
theory has been carried out yieldingg(r ), direct correlation
function c(r ) for the entire range and the bridge functio
B(r ) has been extracted in this process of extrapolation.
bridge function thus generated is found to depend stron
on the system size. Although the finite size effect has a li
effect on the RDF’s, the values of the static structure fac
S(k) at smaller wave vectors are found to be strongly
fected by the finite size of the system. The bridge funct
extracted for this core-softened potential will be helpful
studying this system through integral equation theory, co
putationally a much more economic way as compared to
simulation study. Further studies on this system are
progress.
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FIG. 8. Same as in Fig. 5 but for systemB.
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